Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues.

نویسندگان

  • Amro A Amara
  • Bernd H A Rehm
چکیده

The class II PHA (polyhydroxyalkanoate) synthases [PHA(MCL) synthases (medium-chain-length PHA synthases)] are mainly found in pseudomonads and catalyse synthesis of PHA(MCL)s using CoA thioesters of medium-chain-length 3-hydroxy fatty acids (C6-C14) as a substrate. Only recently PHA(MCL) synthases from Pseudomonas oleovorans and Pseudomonas aeruginosa were purified and in vitro activity was achieved. A threading model of the P. aeruginosa PHA(MCL) synthase PhaC1 was developed based on the homology to the epoxide hydrolase (1ek1) from mouse which belongs to the alpha/beta-hydrolase superfamily. The putative catalytic residues Cys-296, Asp-452, His-453 and His-480 were replaced by site-specific mutagenesis. In contrast to class I and III PHA synthases, the replacement of His-480, which aligns with the conserved base catalyst of the alpha/beta-hydrolases, with Gln did not affect in vivo enzyme activity and only slightly in vitro enzyme activity. The second conserved histidine His-453 was then replaced by Gln, and the modified enzyme showed only 24% of wild-type in vivo activity, which indicated that His-453 might functionally replace His-480 in class II PHA synthases. Replacement of the postulated catalytic nucleophile Cys-296 by Ser only reduced in vivo enzyme activity to 30% of wild-type enzyme activity and drastically changed substrate specificity. Moreover, the C296S mutation turned the enzyme sensitive towards PMSF inhibition. The replacement of Asp-452 by Asn, which is supposed to be required as general base catalyst for elongation reaction, did abolish enzyme activity as was found for the respective amino acid residue of class I and III enzymes. In the threading model residues Cys-296, Asp-452, His-453 and His-480 reside in the core structure with the putative catalytic nucleophile Cys-296 localized at the highly conserved gamma-turns of the alpha/beta-hydrolases. Inhibitor studies indicated that catalytic histidines reside in the active site. The conserved residue Trp-398 was replaced by Phe and Ala, respectively, which caused inactivation of the enzyme indicating an essential role of this residue. In the threading model this residue was found to be surface-exposed. No evidence for post-translational modification by 4-phosphopantetheine was obtained. Overall, these data suggested that in class II PHA synthases the conserved histidine which was found as general base catalyst in the catalytic triad of enzymes related to the alpha/beta-hydrolase superfamily, was functionally replaced by His-453 which is conserved among all PHA synthases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Various Carboxylic Acids on the Biosynthesis of Polyhydroxyalkanoate in Pseudomonas aeruginosa PA01

      In the present study, four carbon sources were tested for the polyester synthesis of Pseudomonas aeruginosa PA01 which is a ubiquitous environmental bacterium and is one of the top three causes of opportunistic human infections. These included linear C8 to C11 carboxylic acids. Octanoic acid, nonanoic acid, decanoic acid and undecanoic acid were added to M1 ...

متن کامل

Support for a three-dimensional structure predicting a Cys-Glu-Lys catalytic triad for Pseudomonas aeruginosa amidase comes from site-directed mutagenesis and mutations altering substrate specificity.

The aliphatic amidase from Pseudomonas aeruginosa belongs to the nitrilase superfamily, and Cys(166) is the nucleophile of the catalytic mechanism. A model of amidase was built by comparative modelling using the crystal structure of the worm nitrilase-fragile histidine triad fusion protein (NitFhit; Protein Data Bank accession number 1EMS) as a template. The amidase model predicted a catalytic ...

متن کامل

Investigating Class I, II and III Integrons in Multidrug Resistance in Pseudomonas aeruginosa Isolated from Hospital Infections in Ahvaz

Background and Aims: The indiscriminate use of antibiotics can lead to antibiotic resistance in the treatment of infections caused by bacteria such as Pseudomonas aeruginosa. The presence of integrons in Pseudomonas is clearly associated with multidrug resistances. Therefore, this study aimed at tracking class I, II and III integrons of antibiotic-resistant isolates of Pseudomonas aeruginosa th...

متن کامل

Pterin-4a-carbinolamine dehydratase from Pseudomonas aeruginosa: characterization, catalytic mechanism and comparison to the human enzyme.

The three-dimensional structure of pterin-4a-carbinolamine dehydratase (PCD) from Pseudomonas aeruginosa has been solved. Based on this we have investigated the roles of putative active center residues through functional replacement by site-directed mutagenesis. Three histidines, His73, His74 and His91, appear to be involved in dehydration catalysis. The three-dimensional positions of these res...

متن کامل

Polyester synthases: natural catalysts for plastics.

Polyhydroxyalkanoates (PHAs) are biopolyesters composed of hydroxy fatty acids, which represent a complex class of storage polyesters. They are synthesized by a wide range of different Gram-positive and Gram-negative bacteria, as well as by some Archaea, and are deposited as insoluble cytoplasmic inclusions. Polyester synthases are the key enzymes of polyester biosynthesis and catalyse the conv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 374 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2003